Use of Notations & Alphabets

Rishi, Aditya & Diya

WHY ARE SYMBOLS AND NOTATIONS USED?

https://youtu.be/eVm063xmnow

Where do math symbols come from? - John David Walters

By Ben Crowder • bencrowder.net • Last modified 2 May 2012

GREEK ALPHABET

Aα

ALPHA [a]

άλφα

BETA [b] βῆτα

 $\overline{\Gamma}\overline{\gamma}$

GAMMA [g] γάμμα Δδ

DELTA [d] δέλτα

Εε

EPSILON [e] ἒ ψιλόν $Z\zeta$

ZETA [dz] $\zeta \tilde{\eta} \tau \alpha$

Ηη

ETA [ε:] ἦτα $\Theta\theta$

THETA [th] $\theta \tilde{\eta} \tau \alpha$

l

IOTA [i] *lῶτα*

Κκ

ΚΑΡΡΑ [k] κάππα

Λλ

LAMBDA [1] λάμβδα Μμ

MU [m] $\mu \tilde{v}$

 $N\nu$

NU [n]

 $\Xi \xi$

XI [ks] ξεῖ Oo

OMICRON [0] ὂ μικρόν Ππ

PI [p] πεῖ

Ρρ

RHO [r] ῥῶ Σσς

SIGMA [s] σῖγμα

Ττ

TAU [t] ταῦ

Υυ

UPSILON [θ] ὖ ψιλόν Φφ

PHI [p^h] *φεῖ*

Χχ

CHI [k^h] χεῖ Ψψ

PSI [ps] ψεῖ $\Omega \omega$

OMEGA [5:] ὧ μέγα

Notation of operations

Math Operations	Symbols	Other Words
Addition	+	sum together Altogether total all total number in all add
Subtraction		minus How many more? greater than How many left? more than How many less? take away subtract fewer than difference less than is left
Multiplication	X •	product multiply multiplied by times
Division	· /	quotient each dividend per divide average divided by divide equally
Equal	=	the same equals the same as is equal to equivalent
		by Deborah Wahlstrom

Notations in geometry

2	Angle	
∠ABC	Angle ABC	
ÂB	Arc AB	
mÂB	Measure of arc AB	
ĀB	Line AB	
AB	Ray AB	
ĀB	Line segment AB	
AB	Length of line segment AB	
≅	Congruent	
0	Degree	
	Parallel	
1	Perpendicular	
~	Similar	
Δ	Triangle	

Notation of Statistics and Probability

Symbol	Symbol Name	Meaning / definition	Example
P(A)	probability function	probability of event A	P(A)=0.5
$P(A \cap B)$	probability of events intersection	probability that of events A and B	$P(A \cap B) = 0.5$
$P(A \cup B)$	probability of events union	probability that of events A or B	$P(A \cup B) = 0.5$
$P(A \mid B)$	conditional probability function	probability of event A given event B occured	$P(A \mid B) = 0.3$
f(x)	probability density function (pdf)	$P(a \le x \le b) = \int f$ (x) dx	
F(x)	cumulative distribution function (cdf)	$F(x) = P(X \le x)$	
μ	population mean	mean of population values	$\mu = 10$

Bibliography

https://cdnc.ucr.edu/?a=d&d=HTES19101109.2.32&e=----en--20--1--txt-txIN------1

https://www.intmath.com/blog/learn-math/math-its-all-greek-to-me-1048

https://www.quora.com/Why-do-we-use-Greek-letters-in-mathematics

https://en.wikipedia.org/wiki/Table_of_mathematical_symbols_by_introduction_date

https://www.encyclopediaofmath.org/index.php/Mathematical_symbols

https://math.stackexchange.com/questions/1844374/why-does-the-symbol-for-the-multiplication-operation-change-shape